3 research outputs found

    On the Adaptive Security of the Threshold BLS Signature Scheme

    Get PDF
    Threshold signatures are a crucial tool for many distributed protocols. As shown by Cachin, Kursawe, and Shoup (PODC `00), schemes with unique signatures are of particular importance, as they allow to implement distributed coin flipping very efficiently and without any timing assumptions. This makes them an ideal building block for (inherently randomized) asynchronous consensus protocols. The threshold-BLS signature of Boldyreva (PKC `03) is both unique and very compact, but unfortunately lacks a security proof against adaptive adversaries. Thus, current consensus protocols either rely on less efficient alternatives or are not adaptively secure. In this work, we revisit the security of the threshold BLS signature by showing the following results, assuming t adaptive corruptions: - We give a modular security proof that follows a two-step approach: 1) We introduce a new security notion for distributed key generation protocols (DKG). We show that it is satisfied by several protocols that previously only had a static security proof. 2) Assuming any DKG protocol with this property, we then prove unforgeability of the threshold BLS scheme. Our reductions are tight and can be used to substantiate real-world parameter choices. - To justify our use of strong assumptions such as the algebraic group model (AGM) and the hardness of one-more-discrete logarithm (OMDL), we prove an impossibility result: Even in the AGM, a strong interactive assumption is required in order to prove the scheme secure

    Network-Agnostic Security Comes (Almost) for Free in DKG and MPC

    Get PDF
    Distributed key generation (DKG) protocols are an essential building block for threshold cryptosystems. Many DKG protocols tolerate up to ts<n/2t_s<n/2 corruptions assuming a well-behaved synchronous network, but become insecure as soon as the network delay becomes unstable. On the other hand, solutions in the asynchronous model operate under arbitrary network conditions, but only tolerate ta<n/3t_a<n/3 corruptions, even when the network is well-behaved. In this work, we ask whether one can design a protocol that achieves security guarantees in either scenario. We show a complete characterization of network-agnostic DKG protocols, showing that the tight bound is ta+2ts<nt_a+2t_s <n. As a second contribution, we provide an optimized version of the network-agnostic MPC protocol by Blum, Liu-Zhang and Loss [CRYPTO\u2720] which improves over the communication complexity of their protocol by a linear factor. Moreover, using our DKG protocol, we can instantiate our MPC protocol in the plain PKI model, i.e., without the need to assume an expensive trusted setup. Our protocols incur the same communication complexity as state-of-the-art DKG and MPC protocols with optimal resilience in their respective purely synchronous and asynchronous settings, thereby showing that network-agnostic security comes (almost) for free

    Twinkle: Threshold Signatures from DDH with Full Adaptive Security

    Get PDF
    Sparkle is the first threshold signature scheme in the pairing-free discrete logarithm setting (Crites, Komlo, Maller, Crypto 2023) to be proven secure under adaptive corruptions. However, without using the algebraic group model, Sparkle\u27s proof imposes an undesirable restriction on the adversary. Namely, for a signing threshold t<nt<n, the adversary is restricted to corrupt at most t/2t/2 parties. In addition, Sparkle\u27s proof relies on a strong one-more assumption. In this work, we propose Twinkle, a new threshold signature scheme in the pairing-free setting which overcomes these limitations. Twinkle is the first pairing-free scheme to have a security proof under up to tt adaptive corruptions without relying on the algebraic group model. It is also the first such scheme with a security proof under adaptive corruptions from a well-studied non-interactive assumption, namely, the Decisional Diffie-Hellman (DDH) assumption. We achieve our result in two steps. First, we design a generic scheme based on a linear function that satisfies several abstract properties and prove its adaptive security under a suitable one-more assumption related to this function. In the context of this proof, we also identify a gap in the security proof of Sparkle and develop new techniques to overcome this issue. Second, we give a suitable instantiation of the function for which the corresponding one-more assumption follows from DDH
    corecore